Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply

نویسندگان

  • Kunpu Zhang
  • Junjun Wang
  • Liyi Zhang
  • Chaowu Rong
  • Fengwu Zhao
  • Tao Peng
  • Huimin Li
  • Dongmei Cheng
  • Xin Liu
  • Huanju Qin
  • Aimin Zhang
  • Yiping Tong
  • Daowen Wang
چکیده

Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW) in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF), rainfed (RF), reduced nitrogen (RN), and reduced phosphorus (RP) environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of genomic loci controlling phenologic and morphologic traits in barley (Hordeum vulgare L.) genotypes using association analysis

Association mapping is a technique with high resolution for QTL mapping based on linkage disequilibrium and has shown more promising for describing genetically complex traits. In addition, it is a powerful tool for describing complex agronomic traits and identifying alleles that can contribute to enhance the desired traits. In this study, whole genome association mapping was used in a set of 14...

متن کامل

Genetic variation and association analysis of some important traits related to grain in rice (Oryza sativa L.) germplasm

The identification of genomic loci involved in control of quantitative traits receives growing attention in plant molecular breeding. The present study was carried out to evaluate the genetic variability among 48 rice genotypes and determine the genomic regions associated with ten grain related important traits. A total number of 63 alleles were detected by 18 selected SSR markers from differen...

متن کامل

The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population

Genetic variation has been observed in both protein concentration in wheat grain and total protein content (protein yield). Here we describe the genetic analysis of variation for grain protein in response to nitrogen (N) supply and locate significant genomic regions controlling grain protein components in a spring wheat population. In total, six N use efficiency (NUE) field trials were carried ...

متن کامل

Exotic QTL improve grain quality in the tri-parental wheat population SW84

DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of...

متن کامل

Genetic Analysis and QTLs Identification of Some Agronomic Traits in Bread Wheat (Triticum aestivum L.) under Drought Stress

In order to study the genetic conditions of some agronomic traits in wheat, a cross was made between Gaspard and Kharchia varieties. F2, F3 and F4 progenies with parents were evaluated under drought conditions. Three-parameter model [m d h] considered as the best fit for number of fertile tiller and flag leaf length using generations mean analysis method. For number of grain per spike and main ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013